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Analysis of a Partially Cracked Panel
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Nomenclature

2b = panel width

E = modulus of elasticity

e;; = strain tensor

G = shear modulus of elasticity
I =length of a panel

2L = crack length

u,v= x and y components of displacement
W, = band width

x, y = Cartesian coordinates

o;; = stress tensor

8 = first strain invariant

d;; = Kronecker delta

o, = applied stress

ODERN aircraft structural design takes into account

the fail safe consideration. In the giant C-5A structural
design, an intermediate titanium band is bonded on the skin
between every two adjacent frames for reduction of peak stress
level on one hand and for the fail safe design on the other. A
crack may be allowed to occur between two adjacent straps
and across a frame without causing catastrophic failure of the
whole structural system. The proper design of such structural
panel adequate for fail safe consideration depends on the
knowledge of the stress redistribution.

Each panel of / X 2b size is attached to stiffeners along its
edges x =0, /, and y = 4+ b. The stiffeners are considered to
be rigid in the longitudinal direction and flexible laterally. A
thin strap of W, width is bonded on each panel between two
adjacent stiffeners as a crack stopper, and a crack is considered
to occur along y = 0 and stopped at the edge of straps of two
adjacent panels similarly loaded along y = +5. The problem
is treated as a plane elasticity problem and the effects caused
by the variation of panel thickness due to bands are considered
negligible. Solutions satisfying exactly the governing dif-
ferential equations and all but one boundary condition aré
obtained. The last boundary condition which is one of the
two conditions along the crack line is made to be satisfied by
collocation approximation. The bandwidth is then deter-
mined according to an engineering approach by considering
that the panel material within the bandwidth becomes fully
plastic. = Rigorous elastoplastic analysis is not considered.

A numerical example based on typical C-5A panel material
and geometry is included for illustrative purposes. Curves
relating the applied stress and minimum required bandwidth
are presented. ’
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Elastic Stress Analysis

Basic equations for plane elasticity problems may be found
in books on elasticity such as Ref. 1. The stress displacement
relations and equilibrium equations governing displacement
components according to the Hooke’s law are presernited below
in tensor notation:
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where oy, is the stress tensor, ; are displacement components,
E is the modulus of elasticity, v is the Poisson’s ratio, and

8;; is the Kronecker delta. In expandéd form, Eq. (2) with
Us = U, U = v, X1 = x and x, = y may be written as follows:
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Because of symmetry in geometry and loading about x = 0 and
y =0, only half of a panel (0 <x <[, 0 <y < b) as shown in
Fig. 1 is needed for analysis. According to the type of edge
stiffeners and loading condition described earlier, the following
boundary conditions are considered:

u(0,y)=0 @
u(l,y) #0 &)
(0,y) =0 ©
v(l,) =0 @)
u(x, b)=0 (8)
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Fig.1 Geometry and coordinates.
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According to the boundary conditions given by Eqs. @),
the general solutions of the differential Egs. (3a) and (3b) are
taken to be

= "gl Un(7)(cosanx — 1) (13)

=3 Valy) sincnx (14)

where o, = mn/l. Substituting Eqs. (13) and (14) into
Egs. (3a) and (3b) and subsequently solving the resulting dif-
ferential equations, one obtains, for each m, the following
general solutions:

Vi == (Am + Cnotny) coshany 4 (B, + Dna,y) sinha,y (15)

U= (Am -+ Cmoc,,,y -+ 1—+— D ) Sll’lht‘x,,,y

+( m+1

Detailed steps may be referred to in Ref. 2.
By satisfying the boundary conditions (8-10), one obtains
the following results:

C + D,,,oc,,,y) cosha,y (16)

Dpn=—1+v)2 An an
Cn= BmAm + ,Bm*Bm (18)
ym*Bm = am/E‘xm - 'ymAm (19)

where /gm’ /gm*: Ama Vms and '}/m* are constants, and
2 !
an=5 1—1?) f o{x) sinot,xdx
]

Now all the unknown coefficients can be expressed in terms
of one set of Fourier coefficients 4,. These constants may
be determined by using the boundary conditions (11) and (12),
and these conditions require

3 (smz,,, + yi,; g,,,) sinaax=0 for O<x<L (20)
m=1 m

S Ansinayx =0 for L<x<I 1)
m=1

to be satisfied where

14+v ym*g

)

It is difficult to satisfy Eqs. (20) and (21) for all values of x,
the collocation method requiring the satisfaction of Eqgs. (20)
and (21) at a number of points will be used. As a
result, the number of A, equals the numbér of points con-

sidered in the collocation method will be used, and Egs. (20)
and (21) become

N2
a;==1a4m;sm:=am[pm(l D ym m]

gmzl‘,_ﬁm*_V(l

N N o a.
Z_: 8 Sinomx ) Am = — 2 V— G SINCHX; (22)
N -—
> A sinox; =0 (23)
m=1
forj=1,2,3,...,J,and k=1, 2, 3, ... k where N is equal to

the total number of collocation points considered, J repre-
sents the number of points considered in the region 0 < x < L,

and K represents the number of points considered in the region
L <x<I Equations (22) and (23) represent a total of N
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Fig. 2 Approximation in stress distribution of strap location.

simultaneous algebraic equations from which N number of 4
can be determined. Some discussions on the collocation
method may be found in Ref. 2. If no crack occurs in the
panel, L =0, and 4,, = 0 according to Eq. (21). After having
determined A,,, the displacement components can bé computed
according to Egs. (13) and (14) in conjunction with Egs.
(15-19), and the stresses can be computed according to Eq. (1).

Determination of Bandwidth or Maximum Admissible Applied Stress

It.is assumed that for a given bandwidth W, the magnitude
of the resultant force R. of the stresses according to the linear
elasticity analysis in the region of the bandwidth equals the
magnitude of the resultant force R, in the same region when
the material becomes plastic in this region. This is illustrated
in Fig. (2). According to this assumption R. = R,, where

L+Ws

R. :f Oyodx; R,=0,W; 0y0= Oyyly=0
L

and where o, represents the yield stress of the material. If
&, represents the amplitude of the applied stress ¢, along y = b,
and if o,,0 represents o,,0 corresponding to &, = unity, one
obtains

L+Ws

@j &podx = o, W, 4
L

Equation (24) gives the relationship between the maximum
admissible applied stress &, and the bandwidth W..

Numerical Examples

For illustrative purposes, numerical results for uniformly
applied stress o, with material and geometry similar to C-5A
fuselage panels are obtained according to the data /= 20 in.,
b=39 in, v=03, W;=0.5, 1.5, 2.5, ... 11.5 in. The
normal stress variation along y = 0 computed according to
20, 40 and 80 collocation points for W, = 4.5 in. are plotted
in Fig. 3. The discrepancies occur near the very vicinity of
the crack tip and diminish sharply. Since the region near
the crack tip is always in the plastic state, the yield stress
will actually be considered. The bandwidth calculated ac-
cording to the analysis presented earlier will be the same for
20, 40, and 80 equal spéaced collocation point approximations.
Forty point approximation is used for all other results pre-
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Fig. 3 Stress variation along the crack line.
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Fig. 4 Maximum admissible applied stress vs strap width.

sented in Fig. 4. Determination of more realistic applied
stress distribution for fuselage panels may be found in the
analysis presented in Ref. 4.
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Higher Vibration Modes by Matrix
Iteration

L. W. REHFIELD*
Georgia Institute of Technology, Atlanta, Ga.

Introduction

HE method of matrix iteration remains a useful approach
to determining normal modes of vibration for elastic
structures. It is straightforward to use, with or without
the aid of a digital computer, and it converges rapidly if the
natural frequencies are well separated. It possesses the dis-
advantage that numerical errors in lower vibration modes are
_ propagated into the calculations for higher modes. This
difficulty can be overcome, however, by employing a hybrid
method which alternately searches for zeros in the character-
istic determinant in the neighborhood of frequencies found
by iteration. '

The usual method of finding higher modes by matrix
iteration is sweeping, which is described in textbooks on
structural dynamics.!=® In the sweeping technique a matrix
must be generated which renders any trial matrix for, say,
the kth vibration mode orthogonal to the first £ — 1 modes.
Thus, orthogonality of modes is assured (to within the
numerical accuracy implied) and the dynamic equations are
solved by iteration. '

Another method for finding higher modes can be devised
which. satisfies both the orthogonality relations and the dy-
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namic equations simultaneously by iteration. It stems from
the result presented without proof on pages 168—169 of Ref. 1;
it was communicated to these authors by M. J. Turner of
the Boeing Airplane Company. This approach is the subject
of this Note, and it will be referred to as “Turner’s method.”

Derivation of Turner’s Method

Consider a dynamic system characterized by n-degrees of
freedom. Assume for illustrative purposes that the first
vibration mode ¢‘,x; and its natural frequency w; have
been found by some means and that it is desired to find the
second mode ¢ and its corresponding frequency w, by
matrix iteration. The second mode must satisfy the ortho-
gonality relation

(cp(l)Tlxn)(Mnxn)(P(z)nxl =0 (1)
and the dynamic equation
(Drxn)ep@ux s = [1(@2)*1p®nx 93]

M is the system’s mass matrix and D = CM. C is the flexi-
bility matrix for the structure.

A modified iteration problem can be defined of the following
form:

D — Bux 1 (@) ™Ay = (1/w)Anx1 ©))
A is a matrix of modal amplitudes and B is a matrix whose
form is as yet unspecified. Notice that if we set A = ®
and w = w, Equation (3) will be satisfied for any nonzero
B matrix. We will choose a B-matrix that will insure that
the iteration of this equation will converge to ¢® and w..
~ Any trial vector A can be expressed as a linear combination
of the » true modes of the form

A= i a@® =[@We®. . .om] (4
k=1 [ ] a

N 4
nXn An

= (‘ann)(anx 1)
¢ is the modal matrix composed of columns of vibration

modes and a is the matrix of modal amplitudes. ¢ satisfies
the equation

1/(wy)? 0 0
DE=% 0 1/(wy)? 0)
0 1/(wn)?
Also
M, 0 0
ome-—| 0 M 6)
0 M,
where the M, are generalized masses defined as
M= (@) Mep® ™

If Eq. (4) is substituted into the left-hand side of Eq. (3),
we obtain

D®a — B(ep ) TMdPa ®)
1/{w:)?
a — B[M,00...0]a
= 1/(w2)? S——
n-terms
1/(wn)?
1 o®—MB LI |
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